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Wigner Distribution Function for the
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We investigate the Wigner distribution function of the general time-dependent quadratic-
Hamiltonian quantum system with the Lewis–Riesenfeld invariant operator method. The
Wigner distribution function of the system in Fock state, coherent state, squeezed state,
and thermal state are derived. We apply our study to the one-dimensional motion of a
Brownian particle and to the driven oscillator with strongly pulsating mass.
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1. INTRODUCTION

The study of quantum properties for the time-dependent quadratic
Hamiltonian system (TDQHS) such as harmonic oscillator with time-variable
mass and/or frequency has attracted considerable interest in the literature (Ji and
Kim, 1996; Song, 2000; Yeon et al., 1997; Nieto and Truax, 2001; Choi, 2004a,b,
2003) after the invention of the LR (Lewis–Riesenfeld) invariants (Lewis, 1967;
Lewis and Riesenfeld, 1969) of the time-dependent harmonic oscillator. The LR
invariants can be applicable to the derivation of the quantum solution for the
TDQHS. In the previous paper, we derived exact wave function, energy eigen-
value, fluctuation of canonical variables, and uncertainty relation for the TDQHS
(Choi, 2003, 2004a,b). We also investigated coherent state (Choi, 2004a), squeezed
state (Choi, 2004b) and thermal state (Choi, 2003) of the TDQHS.

In this paper, we apply a phase space distribution function of quantum me-
chanics, the so-called Wigner distribution function proposed by Wigner (Wigner,
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1932) to the general TDQHS. Even though the Wigner distribution function of-
fers a joint probability for position and momentum, it turned out that this func-
tion allows negative probability in some subset of phase space point (q, p). In
fact, the only pure states for which the Wigner distribution function is every-
where positive are those for which the wave function satisfying Schrödinger
equation is Gaussian (Hudson, 1974). For this reason, the Wigner distribution
function is regarded as ‘quasiprobability density.’ In fact, it has been realized
that quantum phase distribution function should be considered as just a math-
ematical tool that facilities quantum calculations since the concept of a joint
probability at a phase space point (q, p) is not permissible due to the Heigen-
berg uncertainty principle (Lee, 1995). It may be worth to point out that Wigner
distribution function has proved proportional to the expectation value of the par-
ity operator (Royer, 1977). The Wigner distribution function can be widely used
to the description of quantum states in a variety of branches in physics such
as quantum optics (Schleich, 2001; Abe and Suzuki, 1992), solid-state physics
(Janssen and Zwerger, 1995), and nonlinear physics (Lee, 1995) since it is
useful for studying the passage from quantum to classical mechanics. Li
gave a fairly rigorous group theoretical derivation of Wigner distribution
function (Li, 1994). Polychromatic paraxial wavefields and their color im-
ages on a screen are studied using Wigner distribution function by Wolf
(Wolf, 1996). Wigner distribution functions defined on coadjoint orbits of
a class of semi-direct product groups are constructed (Krasowska and Ali,
2003). Alonso et al. proposed a form of the Wigner distribution functions for
Hamiltonian systems in spaces of constant negative curvature such as hyper-
boloids (Alonso et al., 2002) and constant positive curvature such as spheres
(Alonso et al., 2003).

In Section 2, we discuss the Fock state of the general TDQHS and derive
Fock state Wigner distribution function. We evaluated Wigner distribution func-
tions in coherent state, in squeezed state, and in thermal state in Section 3. We
applied our study into the quantum system of one-dimensional motion of Brow-
nian particle and the driven oscillator with strongly pulsating mass in Section
4. In the last section, we give a summary of our developments of the previous
sections.

2. WIGNER DISTRIBUTION FUNCTION IN FOCK STATE

In ref. (Choi, 2004a), we derived exact quantum states of the general TDQHS.
We briefly review them for the time beng. We represent the Hamiltonian of the
most general TDQHS in the form

Ĥ (q̂, p̂, t) = A(t)p̂2 + B(t)(q̂p̂ + p̂q̂) + C(t)q̂2 + D(t)q̂ + E(t)p̂ + F (t),
(1)
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where A(t) − F (t) are time-variable functions that are differentiable with respect
to time. We suppose that A(t) �= 0. Functions D(t) and E(t) are related to the
driving force of the system and F (t) is related to the reference point of potential
energy. Although F (t) is zero or constant in most case, we let it a function of time
in order to study TDQHS with generalized form of Hamiltonian. By appropriate
choice of A(t) − F (t), the system described by Eq. (1) may be applied to various
concrete physical problem (see Section 4).

In order to facilitate the investigation of the quantum state for the TDQHS, it
is convenient to introduce LR invariant operator that given by (Choi, 2004a)

Î = �2

4ρ2(t)
(q̂ − qp(t))2 +

[
ρ(t)(p̂ − pp(t)) + 1

2A
(2Bρ(t) − ρ̇(t))(q̂ − qp(t))

]2

,

(2)
where � is arbitrary real constant and ρ(t) is some time-variable real solution of
the following differential equation

ρ̈(t) − Ȧ

A
ρ̇(t) +

(
2
ȦB

A
− 4B2 + 4AC − 2Ḃ

)
ρ(t) − �2A2 1

ρ3(t)
= 0, (3)

and qp(t) and pp(t) are particular solutions of the classical equation of motion in
coordinate and momentum space, respectively. We introduce annihilation operator
of the form (Choi, 2004a)

â =
√

1

h�

{[
�

2ρ
+ i

1

2A
(2Bρ − ρ̇)

]
(q̂ − qp) + iρ(p̂ − pp)

}
, (4)

and its adjoint â†, creation operator. We can easily check that [â, â†] = 1. In terms
of â and â†, Eq. (2) is simplified to

Î = h�

(
â†â + 1

2

)
. (5)

The wave function of the system that satisfy the Schrödinger equation is
given by (Choi, 2004a)

ψn(q, t) = φn(q, t) exp [iεn(t)], (6)

where φn(q, t) is the eigenstate of the invariant operator Î :

φn(q, t) = 4

√
�

2ρ2hπ

1√
2nn!

Hn

[√
�

2ρ2h
(q − qp)

]

× exp

{
i

h
ppq − 1

2ρh

[
�

2

1

ρ
+ i

2A
(2Bρ − ρ̇)

]
(q − qp)2

}
, (7)
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and εn(t) total phase of the wave function:

εn(t) = −
(

n + 1

2

) ∫ t

0

A(t ′)�
ρ2(t ′)

dt ′

− 1

h

∫ t

0

[
Lp(qp(t ′), q̇p(t ′), t ′) − E2(t ′)

4A(t ′)
+ F (t ′)

]
dt ′, (8)

with

Lp(qp(t ′), q̇p(t ′), t ′) = 1

4A(t ′)
q̇2

p(t ′) − B(t ′)
A(t ′)

qp(t ′)q̇p(t ′)

−
(

C(t ′) − B2(t ′)
A(t ′)

)
q2

p(t ′). (9)

If we put ρ(t) = �1/2ρ0(t), all the �’s in Eqs. (7) and (8) disappear. Thus,
we need not worry about the magnitude of the constant � (Choi, 2004b).

When we define the density operator � as

�̂ =
∑
n,m

�nm|ψn〉〈ψm|, (10)

the corresponding Wigner distribution function is represented as

W (q, p, t) = 1

πh

∫ ∞

−∞
〈q − y|�̂|q + y〉e2ipy/ h dy

= 1

πh

∫ ∞

−∞
�̂(q − y, q + y, t)e2ipy/ h dy. (11)

For pure state �̂(q, q ′, t) is given by

�̂(q, q ′, t) = ψn(q, t)ψ∗
n (q ′, t), (12)

so that we can express Eq. (11) as

Wn(q, p, t) = 1

πh

∫ ∞

−∞
ψ∗

n (q + y, t)ψn(q − y, t)e2ipy/ h dy. (13)

Substitution of Eq. (6) into the above equation gives

Wn(q, p, t) = 1

πh

√
�

2ρ2hπ

1

2nn!
exp

[
− �

2ρ2h
(q − qp)2

]

×
∫ ∞

−∞
Hn

[√
�

2ρ2h
(q − qp + y)

]
Hn

[√
�

2ρ2h
(q − qp − y)

]

× exp

{
− �

2ρ2h
y2 + i

h

[
2(p − pp) + 2Bρ − ρ̇

ρA
(q − qp)

]
y

}
dy.

(14)
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Using the known integral formula (Gradshteyn and Ryzhik, 1980)∫ ∞

−∞
dze−z2

Hn(z + α + β)Hn(z + α − β) = 2nπ1/2n!Ln[2(β2 − α2)], (15)

we arrive at

Wn(q, p, t) = (−1)n

πh
e−2I (q,p,t)/( h�)Ln

(
4

h�
I (q, p, t)

)
, (16)

where Ln is Laguerre polynomial and I (q, p, t) classical invariant quantity which
can be obtained from Eq. (2) by replacing canonical operators q̂ and p̂ with
classical variables q and p:

I (q, p, t) = �2

4ρ2(t)
(q − qp(t))2

+
[
ρ(t)(p − pp(t)) + 1

2A
(2Bρ(t) − ρ̇(t))(q − qp(t))

]2

. (17)

In case of standard harmonic oscillator, I (q, p, t) in Eq. (16) becomes classi-
cal Hamiltonian of the system. Although Eq. (16) is real, it is not always positive.
Hence we cannot consider it as a probability distribution. However, when inte-
grated over either of two variables q and p, it permits to be probability distribution
for the other (Lee, 1995)∫ ∞

−∞
Wn(q, p, t) dq = |ψn(p, t)|2, (18)

∫ ∞

−∞
Wn(q, p, t) dp = |ψn(q, t)|2. (19)

We define the displacement operator in the form

D̂(A) ≡ D̂(q, p) = exp(Aâ† − A∗â)

= exp

{
i

h
[(p − pp)(q̂ − qp) − (q − qp)(p̂ − pp)]

}
, (20)

where

A =
√

1

h�

{[
�

2ρ
+ i

1

2A
(2Bρ − ρ̇)

]
(q − qp) + iρ(p − pp)

}
. (21)

We denote real and imaginary part of A as AR and AI:

A = AR + iAI, (22)

AR = 1

2ρ

√
�

h
(q − qp), (23)
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AI =
√

1

h�

[
1

2A
(2Bρ − ρ̇)(q − qp) + ρ(p − pp)

]
. (24)

In later discussion, we also use phase representation of A:

A = |A|ei
, (25)

|A| = (
A2

R + A2
I

)1/2
, (26)


 = tan−1 AI

AR
. (27)

In terms of |A|, Eq. (17) can be rewritten as

I = h�|A|2. (28)

Canivell and Seglar derived a simple expression of the parity operator of the form
(Canivell and Seglar, 1978)

Û0 = exp(iπâ†â) =
∑

n

(−1)n|ψn〉〈ψn|. (29)

Some of the important properties of the Û0 are (Bishop and Vourdas, 1994;
Chountasis and Vourdas, 1998; Chountasis et al., 1999)

Û0|q〉 = | − q〉, Û0|p〉 = | − p, 〉 (30)

Û0q̂Û
†
0 = −q̂, Û0p̂Û

†
0 = −p̂, (31)

Û0D̂(q, p)Û †
0 = D̂(−q,−p), (32)

Û0f̂ (â, â†)Û †
0 = f (−â,−â†), (33)

where f̂ (â, â†) is an arbitrary operator which is the function of â and â†. The
displaced parity operator is represented as (Chountasis and Vourdas, 1998)

Û (A) ≡ Û (q, p) = D̂(q, p)Û0D̂
†(q, p)

=
∞∑

n=0

(−1)n|ψn;A〉〈ψn;A|

= exp[iπ (â† − A∗)(â − A)], (34)

where

|ψn;A〉 = D̂(A)|ψn〉. (35)

Note that Û (q, p) satisfies Û 2(q, p) = 1 and is Hermitian operator
Û †(q, p) = Û (q, p) (Chountasis and Vourdas, 1998). The action of the Û (q, p)
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on the position and momentum operator give

Û (q, p)q̂Û †(q, p) = −q̂ + 2hA1, (36)

Û (q, p)p̂Û †(q, p) = −p̂ + 2hA2, (37)

where

A1 = 2√
h�

ρAR, (38)

A2 = 2√
h�

(
�

2ρ
AI − 1

2A
(2Bρ − ρ̇)AR

)
. (39)

We can also show that the action of Û (q, p) on the position and momentum
eigenstates result

Û (q, p)|q〉 = eiA3e−2iA2(q− hA1)| − q + 2hA1〉, (40)

Û (q, p)|p〉 = eiA3e2iA1(p− hA2)| − p + 2hA2〉, (41)

where

A3 = 4√
h�

[(
�

2ρ
AI + 1

2A
(2Bρ − ρ̇)AR

)
qp + ρARpp

]
. (42)

In terms of Û (q, p), the Wigner distribution function of density operator Eq.
(10) is (Chountasis and Vourdas, 1998)

W (q, p, t) = 1

πh
Tr[�̂Û (q, p)] = 1

πh

∑
n,m

�nm〈Û (q, p)〉mn, (43)

where

〈Û (q, p)〉mn = 〈ψm|Û (q, p)|ψn〉

= (−1)n
(

n!

m!

)1/2

e−2I (q,p,t)/( h�)Lm−n
n

(
4

h�
I (q, p, t)

)

×
{

2√
h�

[(
�

2ρ
+ i

1

2A
(2Bρ − ρ̇)

)
(q − qp) + iρ(p − pp)

]}m−n

.

(44)

In terms of Eqs. (26) and (27), Eq. (44) can be represented in a simple form

〈Û (|A|,
)〉mn = (−1)n
(

n!

m!

)1/2

(2|A|)m−nei(m−n)
e−2|A|2Lm−n
n (4|A|2). (45)



334 Choi

The Wigner distribution function may be used to evaluate the expectation
value of a quantum operator f̂ in arbitrary state ψ (Lee, 1995):

〈ψ |f̂ |ψ〉 =
∫ ∞

−∞
dq

∫ ∞

−∞
dpW (q, p, t)f (q, p, t). (46)

For example, expectation value of the Hamiltonian and invariant operator in
Fock state are

〈ψn|Ĥ |ψn〉 =
∫ ∞

−∞
dq

∫ ∞

−∞
dpWn(q, p, t)H (q, p, t)

= A

[
h
√

k

4ρ2
(1 + Z2)(2n + 1) + p2

p

]

+B[−hZ(2n + 1) + 2qppp] + C

[
ρ2h√

k
(2n + 1) + q2

p

]
+Dqp + Epp + F, (47)

〈ψn|Î |ψn〉 =
∫ ∞

−∞
dq

∫ ∞

−∞
dpWn(q, p, t)I (q, p, t)

= h�

(
n + 1

2

)
, (48)

where

Z = ρ

A�
(2Bρ − ρ̇). (49)

In the calculations of Eqs. (47) and (48) we used (Magnus et al., 1966)

Ln(x2 + y2) = (−1)n

22n

n∑
m=0

1

m!(n − m)!
H2(n−m)(x)H2m(y). (50)

Equations (47) and (48) coincide with the results of ref. (Choi, 2004a) that
obtained using other method.

3. DISTRIBUTION OF COHERENT, SQUEEZED, AND THERMAL
STATES VIA WIGNER DISTRIBUTION FUNCTION

The coherent state |α〉 is an eigenstate of the annihilation operator

â|α〉 = α|α〉. (51)
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Multiplying 〈q| to both side of the above equation from left, we obtain the
position representation of the coherent state (Choi, 2004a):

〈q|α〉 = 4

√
�

2ρ2hπ
exp

{
− 1

2ρh

[
�

2ρ
(〈q〉 − q)2 + i

A
(2Bρ − ρ̇)

(
1

2
q2 − 〈q〉q

)]

+ i

h
〈p〉q + iδc,q

}
, (52)

where δc,q is some phase and 〈q〉 and 〈p〉 are expectation values in coherent state

〈q〉 = 〈α|q̂|α〉

= ρ

√
h

�
(α + α∗) + qp, (53)

〈p〉 = 〈α|p̂|α〉

=
√

h�

2iρ
[(1 − iZ)α − (1 + iZ)α∗] + pp. (54)

From the above two equations, we see that the eigenvalue α is given by

α = 1

2ρ

√
�

h
(1 + iZ)(〈q〉 − qp) + iρ

√
1

h�
(〈p〉 − pp). (55)

The Wigner distribution function for the coherent state representation is

Wc(q, p, t) = 1

πh

∫ ∞

−∞
〈α|q + y〉〈q − y|α〉e2ipy/ hdy. (56)

By making use of Eq. (52), the above equation can be evaluated as

Wc(q, p, t) = 1

πh
exp

{
− �

2hρ2
(q − 〈q〉)2

−2ρ2

h�

[
(p − 〈p〉) + 2Bρ − ρ̇

2Aρ
(q − 〈q〉)

]2
}

. (57)

In order to investigate the Wigner distribution function for the squeezed state
representation, let’s consider the operator

b̂ = µâ + νâ†, (58)

where

|µ|2 − |ν|2 = 1. (59)
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We can easily see that b̂ obeys [b̂, b̂†] = 1. The squeezed state |β〉 is eigenstate
of b̂:

b̂|β〉 = β|β〉. (60)

The coordinate representation of the squeezed state is obtained by multiplying
both sides of the above equation from the left by 〈q|

〈q|β〉 = Nq exp

{
− 1

ρh

[


µ − ν

(
1

2
q2 − qpq

)
− iρppq

]
+ µα + να∗

ρ(µ − ν)

√
�

h
q

}
,

(61)

where

Nq =
(

�

2ρ2hπ

1

(µ − ν)(µ∗ − ν∗)

)1/4

× exp


− �

4ρ2h

1

(µ − ν)(µ∗ − ν∗)

(
qp + 2ρ

√
h

�
Re α

)2

+ iδs,q


 ,

(62)

 = �

2ρ
(µ + ν) + i(2Bρ − ρ̇)

2A
(µ − ν) , (63)

with some phase δs,q . Similarly, the momentum representation of the squeezed
state is easily derived to be

〈p|β〉 = Np exp

{
qp

ih
p − 1

h

[ρ
2

(µ − ν) (p2 − 2ppp) + i
(
µα + να∗) √

h�p
]}

,

(64)

where

Np =
(

�

2h2π

)1/4

exp

{
− �

4h||2
[
pp + 1

ρ

√
h�

×
(

Im α − ρ

A�
(2Bρ − ρ̇)Re α

) ]2

+ iδs,p

}
, (65)

with another some phase δs,p. A simple phase space distribution of the squeezed
state is

Ps(q, p, t) = |〈q|β〉|2|〈p|β〉|2

= �

2h||πρ

1

[(µ − ν)(µ∗ − ν∗)]1/2
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× exp

{
− �

2ρ2h

1

(µ − ν)(µ∗ − ν∗)

(
q − qp − 2ρ

√
h

�
Re α

)2

− �

2h||2
[
p − pp − 1

ρ

√
h�

(
Im α − ρ

A�
(2Bρ − ρ̇)Re α

)]2
}

.

(66)

The Wigner distribution function for the squeezed state representation is

Ws(q, p, t) = 1

πh

∫ ∞

−∞
〈β|q + y〉〈q − y|β〉e2ipy/ h dy. (67)

Substitution of Eq. (61) into the above equation gives

Ws(q, p, t) = 1

πh
exp

{
− �

2hρ2

(q − 〈q〉)2

(µ − ν)(µ∗ − ν∗)
− 2ρ2

h�
(µ − ν)(µ∗ − ν∗)

×
[
(p − 〈p〉) +

(
2Bρ − ρ̇

2Aρ
− i�

2ρ2

µ∗ν − µν∗

(µ − ν)(µ∗ − ν∗)

)
(q − 〈q〉)

]2}
.

(68)

For µ = 1 and ν = 0, the above equation recovers to that of coherent state
Eq. (57).

The probability Pn,s of finding n quanta in the squeezed state is given by

Pn,s = 2πh

∫ ∞

−∞
dq

∫ ∞

−∞
dpWn(q, p, t)Ps(q, p, t). (69)

Now we introduce parameter c as c = µ/ν with |c| ≥ 1. In case that c is real,
we readily evaluate the above equation using Eqs. (14) and (66) to be

Pn,s =
√

c2 − 1

|c|n+1

1

2nn!
Hn(y)Hn(y∗)

× exp

{
− 2

c − 1

[
(c + 1)(Re α)2 − c2 + 1

4c
(α2 + α∗2) − |α|2

]}
, (70)

where

y = cα + α∗

(2c)1/2
. (71)
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In the calculation of Eq. (70) we used the integral formula Eq. (50). If we
represent α as α = |α|eiϕ(t), Eq. (70) becomes

Pn,s =
√

c2 − 1

|c|n+1

1

2nn!
Hn

( |α|
(2c)1/2

(
ceiϕ(t) + e−iϕ(t)

))

×Hn

( |α|
(2c)1/2

(
ce−iϕ(t) + eiϕ(t)

))
exp

[
−|α|2

(
1 + 1

c
cos[2ϕ(t)]

)]
.

(72)

This is same as that of Eq. (3.3) in ref. (Schleich and Wheeler, 1987).
Now we see the Wigner distribution function for the thermal state represen-

tation. The density operator that satisfying the Liouville–von Neumann equation
in thermal state is given by (Ji and Kim, 1996; Choi, 2003)

�T (q, q ′, t) = 1

Z(t)

∞∑
n=0

ψn(q, t) exp

[
−h�0

kT

(
n + 1

2

)]
ψ∗

n (q ′, t), (73)

where k is Boltzmann’s constant, T the temperature of the system at initial time,
�0 = A(0)�/ρ2(0), and Z(t) the partition function:

Z(t) =
∞∑

n=0

〈ψn(t)|e− h�0(â†â+1/2)/(kT )|ψn(t)〉. (74)

Using Eq. (6), Eq. (73) can be readily calculated as

�T (q, q ′, t) =
√

�

2ρ2hπ

[
tanh

(
h�0

2kT

)]1/2

exp

[
i

h
pp(q − q ′)

]

× exp

{
− i

2Bρ − ρ̇

4ρAh
[(q − qp)2 − (q ′ − qp)2]

− �

8ρ2h

[
tanh

(
h�0

2kT

)
(q + q ′ − 2qp)2 + coth

(
h�0

2kT

)
(q − q ′)2

] }
.

(75)

Then, we also easily derive the corresponding Wigner distribution function

WT(q, p, t) = 1

πh

∫ ∞

−∞
�T (q − y, q + y, t)e2ipy/ h dy

= 1

πh
tanh

(
h�0

2kT

)
exp

{
− tanh

(
h�0

2kT

) {
�

2hρ2
(q − qp)2

+2ρ2

h�

[
(p − pp) + 2Bρ − ρ̇

2Aρ
(q − qp)

]2
}}

. (76)
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4. APPLICATIONS

Our theory may be applied to various kind of time-dependent Hamiltonian
systems. As an example, let us see for the one-dimensional motion of Brownian
particle (Guz et al., 2003).

m
d2q

dt2
+ κ

dq

dt
= F − G sin

[q

l
+ ξ (t)

]
, (77)

where q is coordinate of the particle whose mass is m, κ is a friction constant, F
is a constant external force, G is an amplitude, 2πl is a spatial period, and ξ (t) is a
stationary random process describing phase fluctuations. To simplify the problem,
we only consider the region that q/l + ξ (t) � 1. Then the above equation can be
rewritten as

m
d2q

dt2
+ κ

dq

dt
� F − G

[q

l
+ ξ (t)

]
. (78)

We consider for the case of a stationary frequency modulation by supposing
that the process ξ̇ is an Ornstein–Uhlenbeck process so that

ξ̈ (t) + γ ξ̇ (t) = γ
√
Dw, (79)

where γ is an relaxation constant and D/2π is the spectral density of input
Gaussian noise w. The general solution of the above equation is

ξ (t) = −c1
e−γ t

γ
+ c2 +

√
Dwt, (80)

where c1 and c2 are integral constants. For this system, the Hamiltonian can
expressed in the form

Ĥ = e−κt/m p̂2

2m
+ eκt/m G

2l
q̂2 − meκt/m

[
F + c1

e−γ t

γ
− c2 −

√
Dwt

]
q̂. (81)

We can easily check that the above Hamiltonian gives coordinate equation of
motion Eq. (78) using Hamiltonian dynamics. Then, Eq. (3) becomes

ρ̈ + κ

m
ρ̇ + G

ml
ρ − �2

4m2
e−2κt/m 1

ρ3
= 0. (82)

The solution of the above equation can be written as

ρ(t) = Ẽ
1
2 (t)

ωd

√
m

e−κt/(2m), (83)

where ωd is given by

ωd =
√

G
ml

− κ2

4m2
. (84)
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and

Ẽ(t) =
√

E2
0 − �2ω2

d

4
cos[2(ωdt + θ )] + E0 (85)

with E0 is an integral constant and θ is some phase. The particular solution qp

satisfy the following relations

mq̈p + κq̇p � F − G
(

qp

l
− c1

e−γ t

γ
+ c2 +

√
Dwt

)
, (86)

which leads to

qp(t) = l

Gγ [G + γ l(mγ − κ)]

{
lγ 2(mγ − κ)(F + κl

√
Dw)

+G2
[
c1e

−γ t − γ (c2 +
√
Dwt)

] + Gγ
{
F + l

[
c2γ (κ − mγ )

+
√
Dw(κ + κγ t − mγ 2t)

]}}
. (87)

From q̇p = ∂Ĥ/∂pp, another particular solution in momentum space is given
by

pp(t) = meκt/m dqp(t)

dt
. (88)

Then, Eqs. (57), (68) and (76) becomes

Wc(q, p, t) = 1

πh
exp

{
− �ω2

dm

2hẼ(t)
eκt/m(q − 〈q〉)2 − 2Ẽ(t)

h�ω2
dm

×
[

(p − 〈p〉)e−κt/(2m) + eκt/(2m)

(
mωd

Ẽ(t)

√
E2

0 − �2ω2
d

4

× sin[2(ωdt + θ )] + κ

2

)
(q − 〈q〉)

]2}
, (89)

Ws(q, p, t) = 1

πh
exp

{
− �ω2

dm

2hẼ(t)
eκt/m (q − 〈q〉)2

(µ − ν)(µ∗ − ν∗)

− 2Ẽ(t)

h�ω2
dm

(µ − ν)(µ∗ − ν∗)

[
(p − 〈p〉)e−κt/(2m)
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+ eκt/(2m)

(
mωd

Ẽ(t)

√
E2

0 − �2ω2
d

4
sin[2(ωdt + θ )] + κ

2

− i�ω2
dm

2Ẽ(t)

µ∗ν − µν∗

(µ − ν)(µ∗ − ν∗)

)
(q − 〈q〉)

]2}
, (90)

WT(q, p, t) = 1

πh
tanh

(
h�0

2kT

)
exp

{
− tanh

(
h�0

2kT

){
�ω2

dm

2hẼ(t)
eκt/m(q − qp)2

+ 2Ẽ(t)

h�ω2
dm

[
(p − pp)e−κt/(2m) + eκt/(2m)

(
mωd

Ẽ(t)

√
E2

0 − �2ω2
d

4

× sin[2(ωdt + θ )] + κ

2

)
(q − qp)

]2}}
. (91)

We presented quadrature plot of Wigner distribution function with the choice
of � = 2E0/ωd in Fock state (Fig. 1), in coherent state (Fig. 2), and in squeezed
state (Fig. 3). The graph in Fig. 1 permits negative value as well as positive value
while those in Figs. 2 and 3 are always positive. Figures 1(b), 2(b), and 3(b), shows
the decrease of the position amplitude and the increase of momentum amplitude
with time. These natural change of the amplitude of the oscillations for similar
dissipative TDQHS has been reported in (Nieto and Truax, 2001).

If the dissipation and driving force disappears, i.e., κ = 0, qp = 0, and pp =
0 the system becomes standard harmonic oscillator. Then, with the choice of
� = 2E0/ω0 where ω0 = [G/(ml)]1/2, Eqs. (89), (90), and (91) reduce to

Wc(q, p, t) = 1

πh
exp

[
− mω0

h
(q − 〈q〉)2 − 1

hmω0
(p − 〈p〉)2

]
, (92)

Ws(q, p, t) = 1

πh
exp

{
− mω0

h

(q − 〈q〉)2

(µ − ν)(µ∗ − ν∗)
− 1

hmω0
(µ − ν)(µ∗ − ν∗)

×
[

(p − 〈p〉) − imω0
µ∗ν − µν∗

(µ − ν)(µ∗ − ν∗)
(q − 〈q〉)

]2}
, (93)

WT(q, p, t) = 1

πh
tanh

(
hω0

2kT

)
exp

{
− tanh

(
hω0

2kT

)[
mω0

h
q2 + 1

hmω0
p2

]}
.

(94)

These are coincide to previous reports (Chountasis and Vourdas, 1998).
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Fig. 1. Quadrature plot of Wigner distribution function in Fock state.
The values of quantum number and time, (n, t), are (6,0) for (a), and
(6,8) for (b). We used c1 = 0.1, c2 = 0.1, w = 1, κ = 0.1, γ = 0.1,
D = 1, G = 1, F = 1, m = 1, h = 1, and l = 1.

Now we will apply our theory to the driven oscillator with strongly pulsating
mass (Abdalla and Colegrave, 1985). In this case the Hamiltonian is given by

Ĥ (q̂, p̂, t) = p̂2

2M(t)
+ 1

2
M(t)

[
ω2

0q̂
2 − 2f (t)q̂

]
, (95)
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Fig. 2. Quadrature plot of Wigner distribution function in coherent
state at t = 0(a) and t = 8(b). We supposed that α = |α|eiϕ with
|α| = 1 and ϕ = −ωdt . We used c1 = 0.1, c2 = 0.1, w = 1, κ =
0.1 γ = 0.1, D = 1, G = 1, F = 1, m = 1, h = 1, and l = 1.

where

M(t) = m cos2 ωmt, (96)

f (t) = f0 cos(ωf t + ϑ), (97)

with m is mass at t = 0, ωm and ωf are arbitrary constant frequencies, and
f0 and ϑ are amplitude and initial phase of the driving force. Then, Eq. (3)
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Fig. 3. Quadrature plot of Wigner distribution function in
squeezed state. The values of (µ, ν, t) are (1.35, 0.9, 0) for (a) and
(1.35, 0.9, 8) for (b). We imposed the same condition for α as
in Fig. 2. We used c1 = 0.1, c2 = 0.1, w = 1, κ = 0.1, γ = 0.1,
D = 1, G = 1, F = 1, m = 1, h = 1, and l = 1.

becomes

ρ̈ − 2ωm tan(ωmt)ρ̇ + ω2
0ρ − �2

4M2(t)

1

ρ3
= 0. (98)

The solution of the above equation is

ρ(t) = Ẽ
1
2 (t)

ω
√

m
sec(ωmt), (99)
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where ω is given by

ω =
√

ω2
0 + ω2

m, (100)

and

Ẽ(t) =
√

E2
0 − �2ω2

4
cos[2(ωt + θ )] + E0, (101)

with E0 is an integral constant and θ is some phase. On the other hand, the
equations that particular solutions qp and qp should follow are

q̈p − 2ωm tan(ωmt)q̇p + ω2
0qp = f0 cos(ωf t + ϑ), (102)

p̈p + 2ωm tan(ωmt)ṗp + ω2
0pp = −mf0ωf cos2(ωmt) sin(ωf t + ϑ). (103)

By solving the above two equations, the particular solutions become (Abdalla
and Colegrave, 1985)

qp(t) = 1

2
f0 sec(ωmt)

(
cos[(ωf + ωm)t + ϑ] − cos(ωt) cos ϑ

ω2 − (ωf + ωm)2

+cos[(ωf − ωm)t + ϑ] − cos(ωt) cos ϑ

ω2 − (ωf − ωm)2

)
, (104)

pp(t) = [mM(t)]1/2

(
d

dt
(qp cos ωmt) + ωmqp sin ωmt

)
. (105)

In terms of Eqs. (99), (104), and (105) the quantum solution of the system
can be completely described and the Wigner distribution functions becomes

Wc(q, p, t) = 1

πh
exp

{
− �ω2m

2hẼ(t)
cos2(ωmt)(q − 〈q〉)2 − 2Ẽ(t)

h�ω2m

×
[

(p − 〈p〉) sec(ωmt) + m cos(ωmt)

(
ω

Ẽ(t)

√
E2

0 − �2ω2

4

× sin[2(ωt + θ )] − ωm tan(ωmt)

)
(q − 〈q〉)

]2}
, (106)

Ws(q, p, t) = 1

πh
exp

{
− �ω2m

2hẼ(t)

cos2(ωmt)

(µ − ν)(µ∗ − ν∗)
(q − 〈q〉)2

− 2Ẽ(t)

h�ω2m
(µ − ν)(µ∗ − ν∗)

[
(p − 〈p〉) sec(ωmt)
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+ cos(ωmt)

(
mω

Ẽ(t)

√
E2

0 − �2ω2

4
sin[2(ωt + θ )] − mωm tan(ωmt)

− i�ω2m

2Ẽ(t)

µ∗ν − µν∗

(µ − ν)(µ∗ − ν∗)

)
(q − 〈q〉)

]2}
, (107)

WT(q, p, t) = 1

πh
tanh

(
h�0

2kT

)
exp

{
− tanh

(
h�0

2kT

) {
�ω2m

2hẼ(t)
cos2(ωmt)(q − qp)2

+ 2Ẽ(t)

h�ω2m

[
(p − pp) sec(ωmt) + m cos(ωmt)

(
ω

Ẽ(t)

√
E2

0 − �2ω2

4

× sin[2(ωt + θ )] − ωm tan(ωmt)

)
(q − qp)

]2}}
. (108)

5. SUMMARY

We derived Wigner distribution function of the general TDQHS whose Hamil-
tonian is given by Eq. (1) according to the exact principle of quantum mechanics.
The Wigner distribution function for the Fock state, the coherent state, the squeezed
state, and the thermal state are given by Eqs. (16), (57), (68), and (76), respectively.
The Wigner distribution function for the coherent state, squeezed state, and ther-
mal state is Gaussian while that of the Fock state is non-Gaussian and expressed
in terms of the Laguerre polynomial. From figures we can see that the Wigner
distribution function of the system whose Hamiltonian is explicitly depend on
time follows the rule that the only pure states for which the Wigner distribution
function is everywhere positive are those for which the wave function satisfying
Schrödinger equation is Gaussian. Our development of the Wigner distribution
function may be used to evaluate the expectation value of various quantum oper-
ators in arbitrary state. We evaluated the probability Pn,s of finding n quanta in
squeezed state in Eq. (72) which agree with other reports (Schleich and Wheeler,
1987). Our investigations are applied to the one-dimensional motion of Brownian
particle and to the driven oscillator with strongly pulsating mass. We leave the
research of Wigner distribution function for the superposition of two coherent
states as a later task. We will do it in the near future.
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